翻訳と辞書
Words near each other
・ Seif Kadhim
・ Seif Khalifa
・ Seif Palace
・ Seif Rashidi
・ Seif Samir
・ Seif Sharif Hamad
・ SEIF SLAM
・ Seif Wanly
・ Seif, Wisconsin
・ SEIFA
・ Seifallah Randjbar-Daemi
・ Seifen
・ Seifenbach
・ Seifer
・ Seifert
Seifert conjecture
・ Seifert fiber space
・ Seifert surface
・ Seifertite
・ Seifert–van Kampen theorem
・ Seifert–Weber space
・ Seiffen
・ Seiffert Oval
・ Seiffert's spiral
・ Seifhennersdorf
・ Seifollah Ghaleb
・ Seifollah Vahid Dastjerdi
・ Seifried Helbling
・ Seifu
・ Seifu Makonnen


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Seifert conjecture : ウィキペディア英語版
Seifert conjecture
In mathematics, the Seifert conjecture states that every nonsingular, continuous vector field on the 3-sphere has a closed orbit. It is named after Herbert Seifert. In a 1950 paper, Seifert asked if such a vector field exists, but did not phrase non-existence as a conjecture. He also established the conjecture for perturbations of the Hopf fibration.
The conjecture was disproven in 1974 by Paul Schweitzer, who exhibited a C^1 counterexample. Schweitzer's construction was then modified by Jenny Harrison in 1988 to make a C^ counterexample for some \delta > 0. The existence of smoother counterexamples remained an open question until 1993 when Krystyna Kuperberg constructed a very different C^\infty counterexample. Later this construction was shown to have real analytic and piecewise linear versions.
==References==

*V. Ginzburg and B. Gürel, ''(A C^2-smooth counterexample to the Hamiltonian Seifert conjecture in R^4 )'', Ann. of Math. (2) 158 (2003), no. 3, 953--976
*J. Harrison, ''C^2 counterexamples to the Seifert conjecture'', Topology 27 (1988), no. 3, 249--278.
*G. Kuperberg ''A volume-preserving counterexample to the Seifert conjecture'', Comment. Math. Helv. 71 (1996), no. 1, 70--97.
*K. Kuperberg ''A smooth counterexample to the Seifert conjecture'', Ann. of Math. (2) 140 (1994), no. 3, 723--732.
*G. Kuperberg and K. Kuperberg, ''(Generalized counterexamples to the Seifert conjecture )'', Ann. of Math. (2) 143 (1996), no. 3, 547--576.
*H. Seifert, ''Closed integral curves in 3-space and isotopic two-dimensional deformations'', Proc. Amer. Math. Soc. 1, (1950). 287--302.
*P. A. Schweitzer, ''Counterexamples to the Seifert conjecture and opening closed leaves of foliations'', Ann. of Math. (2) 100 (1974), 386--400.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Seifert conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.